Differential Equations for Symmetric Generalized Ultraspherical Polynomials

نویسنده

  • Roelof Koekoek
چکیده

We look for differential equations satisfied by the generalized Jacobi polynomials { P n (x) }∞ n=0 which are orthogonal on the interval [−1, 1] with respect to the weight function Γ(α+ β + 2) 2α+β+1Γ(α+ 1)Γ(β + 1) (1− x)(1 + x) +Mδ(x+ 1) +Nδ(x− 1), where α > −1, β > −1, M ≥ 0 and N ≥ 0. In the special case that β = α and N = M we find all differential equations of the form ∞ ∑ i=0 ci(x)y (x) = 0, y(x) = P n (x), where the coefficients {ci(x)} ∞ i=1 are independent of the degree n. We show that if M > 0 only for nonnegative integer values of α there exists exactly one differential equation which is of finite order 2α+ 4. By using quadratic transformations we also obtain differential equations for the polynomials { P α,± 1 2 ,0,N n (x) }∞ n=0 for all α > −1 and N ≥ 0. AMS Subject Classification : Primary 33C45 (33A65), Secondary 34A35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives

In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations

In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterraintegro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008